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1.  Number Systems 

1.1  Decimal (Base 10) Number System 

Decimal number system has ten symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9, 

called digits. It uses positional notation. That is, the least-significant digit 

(right-most digit) is of the order of 10^0 (units or ones), the second right-

most digit is of the order of 10^1 (tens), the third right-most digit is of the 

order of 10^2 (hundreds), and so on. For example, 

735 = 7×10^2 + 3×10^1 + 5×10^0 

We shall denote a decimal number with an optional suffix D if ambiguity 

arises. 

1.2  Binary (Base 2) Number System 

Binary number system has two symbols: 0 and 1, called bits. It is also 

a positional notation, for example, 

10110B = 1×2^4 + 0×2^3 + 1×2^2 + 1×2^1 + 0×2^0 

We shall denote a binary number with a suffix B. Some programming 

languages denote binary numbers with prefix 0b (e.g., 0b1001000), or 

prefix b with the bits quoted (e.g., b'10001111'). 

A binary digit is called a bit. Eight bits is called a byte (why 8-bit unit? 

Probably because 8=23). 

1.3  Hexadecimal (Base 16) Number System 

Hexadecimal number system uses 16 symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, 

B, C, D, E, and F, called hex digits. It is a positional notation, for example, 

A3EH = 10×16^2 + 3×16^1 + 14×16^0 

We shall denote a hexadecimal number (in short, hex) with a suffix H. 

Some programming languages denote hex numbers with 

prefix 0x (e.g., 0x1A3C5F), or prefix x with hex digit quoted (e.g., x'C3A4D98B'). 
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Each hexadecimal digit is also called a hex digit. Most programming 

languages accept lowercase 'a' to 'f' as well as uppercase 'A' to 'F'. 

Computers uses binary system in their internal operations, as they are 

built from binary digital electronic components. However, writing or 

reading a long sequence of binary bits is cumbersome and error-prone. 

Hexadecimal system is used as a compact form or shorthand for binary 

bits. Each hex digit is equivalent to 4 binary bits, i.e., shorthand for 4 bits, 

as follows: 
0H (0000B) (0D) 1H (0001B) (1D) 2H (0010B) (2D) 3H (0011B) (3D) 

4H (0100B) (4D) 5H (0101B) (5D) 6H (0110B) (6D) 7H (0111B) (7D) 

8H (1000B) (8D) 9H (1001B) (9D) AH (1010B) (10D) BH (1011B) (11D) 

CH (1100B) (12D) DH (1101B) (13D) EH (1110B) (14D) FH (1111B) (15D) 

1.4  Conversion from Hexadecimal to Binary 

Replace each hex digit by the 4 equivalent bits, for examples, 

A3C5H = 1010 0011 1100 0101B 

102AH = 0001 0000 0010 1010B 

1.5  Conversion from Binary to Hexadecimal 

Starting from the right-most bit (least-significant bit), replace each group 

of 4 bits by the equivalent hex digit (pad the left-most bits with zero if 

necessary), for examples, 

1001001010B = 0010 0100 1010B = 24AH 

10001011001011B = 0010 0010 1100 1011B = 22CBH 

It is important to note that hexadecimal number provides a compact 

form or shorthand for representing binary bits. 

1.6  Conversion from Base r to Decimal (Base 10) 

Given a n-digit base r number: dn-1 dn-2 dn-3 ... d3 d2 d1 d0 (base r), the 

decimal equivalent is given by: 

dn-1 × r^(n-1) + dn-2 × r^(n-2) + ... + d1 × r^1 + d0 × r^0 
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For examples, 

A1C2H = 10×16^3 + 1×16^2 + 12×16^1 + 2 = 41410 (base 10) 

10110B = 1×2^4 + 1×2^2 + 1×2^1 = 22 (base 10) 

1.7  Conversion from Decimal (Base 10) to Base r 

Use repeated division/remainder. For example, 

To convert 261D to hexadecimal: 

  261/16 => quotient=16 remainder=5 

  16/16  => quotient=1  remainder=0 

  1/16   => quotient=0  remainder=1 (quotient=0 stop) 

  Hence, 261D = 105H 

The above procedure is actually applicable to conversion between any 2 

base systems. For example, 

To convert 1023(base 4) to base 3: 

  1023(base 4)/3 => quotient=25D remainder=0 

  25D/3          => quotient=8D  remainder=1 

  8D/3           => quotient=2D  remainder=2 

  2D/3           => quotient=0   remainder=2 (quotient=0 stop) 

  Hence, 1023(base 4) = 2210(base 3) 

1.8  General Conversion between 2 Base Systems with 

Fractional Part 

1. Separate the integral and the fractional parts. 

2. For the integral part, divide by the target radix repeatably, and collect 

the ramainder in reverse order. 

3. For the fractional part, multiply the fractional part by the target radix 

repeatably, and collect the integral part in the same order. 
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Example 1: 

Convert 18.6875D to binary 

Integral Part = 18D 

  18/2 => quotient=9 remainder=0 

  9/2  => quotient=4 remainder=1 

  4/2  => quotient=2 remainder=0 

  2/2  => quotient=1 remainder=0 

  1/2  => quotient=0 remainder=1 (quotient=0 stop) 

  Hence, 18D = 10010B 

Fractional Part = .6875D 

  .6875*2=1.375 => whole number is 1 

  .375*2=0.75   => whole number is 0 

  .75*2=1.5     => whole number is 1 

  .5*2=1.0      => whole number is 1 

  Hence .6875D = .1011B 

Therefore, 18.6875D = 10010.1011B 

Example 2: 

Convert 18.6875D to hexadecimal 

Integral Part = 18D 

  18/16 => quotient=1 remainder=2 

  1/16  => quotient=0 remainder=1 (quotient=0 stop) 

  Hence, 18D = 12H 

Fractional Part = .6875D 

  .6875*16=11.0 => whole number is 11D (BH) 

  Hence .6875D = .BH 
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Therefore, 18.6875D = 12.BH 

 

 

 

1.9  Exercises (Number Systems Conversion) 

1. Convert the following decimal numbers 

into binary and hexadecimal numbers: 

a. 108 

b. 4848 

c. 9000 

 Convert the following binary numbers into hexadecimal and decimal 

numbers: 

 . 1000011000 

a. 10000000 

b. 101010101010 

 Convert the following hexadecimal numbers into binary and decimal 

numbers: 

 . ABCDE 

a. 1234 

b. 80F 

Answers: You could use the Windows' Calculator (calc.exe) to carry out 

number system conversion, by setting it to the scientific mode. (Run "calc" 

⇒ Select "View" menu ⇒ Choose "Programmer" or "Scientific" mode.) 

1. 1101100B, 1001011110000B, 10001100101000B, 6CH, 12F0H, 2328H. 

2. 218H, 80H, AAAH, 536D, 128D, 2730D. 

3. 10101011110011011110B, 1001000110100B, 100000001111B, 703710D, 4660D, 2063D. 
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2.  Integer Representation 

Integers are whole numbers or fixed-point numbers with the radix 

point fixed after the least-significant bit. They are contrast to real 

numbers or floating-point numbers, where the position of the radix point 

varies. It is important to take note that integers and floating-point 

numbers are treated differently in computers. They have different 

representation and are processed differently (e.g., floating-point numbers 

are processed in a so-called floating-point processor). Floating-point 

numbers will be discussed later. 

Computers use a fixed number of bits to represent an integer. The 

commonly-used bit-lengths for integers are 8-bit, 16-bit, 32-bit or 64-bit. 

Besides bit-lengths, there are two representation schemes for integers: 

1. Unsigned Integers: can represent zero and positive integers. 

2. Signed Integers: can represent zero, positive and negative integers. 

Three representation schemes had been proposed for signed 

integers: 

a. Sign-Magnitude representation 

b. 1's Complement representation 

c. 2's Complement representation 

You, as the programmer, need to decide on the bit-length and 

representation scheme for your integers, depending on your application's 

requirements. Suppose that you need a counter for counting a small 

quantity from 0 up to 200, you might choose the 8-bit unsigned integer 

scheme as there is no negative numbers involved. 
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2.1  n-bit Unsigned Integers 

Unsigned integers can represent zero and positive integers, but not 

negative integers. The value of an unsigned integer is interpreted as "the 

magnitude of its underlying binary pattern". 

Example 1: Suppose that n=8 and the binary pattern is 0100 0001B, the 

value of this unsigned integer is 1×2^0 + 1×2^6 = 65D. 

Example 2: Suppose that n=16 and the binary pattern is 0001 0000 0000 

1000B, the value of this unsigned integer is 1×2^3 + 1×2^12 = 4104D. 

Example 3: Suppose that n=16 and the binary pattern is 0000 0000 0000 

0000B, the value of this unsigned integer is 0. 

An n-bit pattern can represent 2^n distinct integers. An n-bit unsigned 

integer can represent integers from 0 to (2^n)-1, as tabulated below: 

N Minimum Maximum 

8 0 (2^8)-1  (=255) 

16 0 (2^16)-1 (=65,535) 

32 0 (2^32)-1 (=4,294,967,295) (9+ digits) 

64 0 (2^64)-1 (=18,446,744,073,709,551,615) (19+ 
digits) 

2.2  Signed Integers 

Signed integers can represent zero, positive integers, as well as negative 

integers. Three representation schemes are available for signed integers: 

1. Sign-Magnitude representation 

2. 1's Complement representation 

3. 2's Complement representation 
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In all the above three schemes, the most-significant bit (msb) is called 

the sign bit. The sign bit is used to represent the sign of the integer - with 

0 for positive integers and 1 for negative integers. The magnitude of the 

integer, however, is interpreted differently in different schemes. 

2.3  n-bit Sign Integers in Sign-Magnitude 

Representation 

In sign-magnitude representation: 

 The most-significant bit (msb) is the sign bit, with value of 0 

representing positive integer and 1 representing negative integer. 

 The remaining n-1 bits represents the magnitude (absolute value) of 

the integer. The absolute value of the integer is interpreted as "the 

magnitude of the (n-1)-bit binary pattern". 

Example 1 : Suppose that n=8 and the binary representation is 0 100 

0001B. 

   Sign bit is 0 ⇒ positive 

   Absolute value is 100 0001B = 65D 

   Hence, the integer is +65D 

Example 2: Suppose that n=8 and the binary representation is 1 000 

0001B. 

   Sign bit is 1 ⇒ negative 

   Absolute value is 000 0001B = 1D 

   Hence, the integer is -1D 

Example 3 : Suppose that n=8 and the binary representation is 0 000 

0000B. 

   Sign bit is 0 ⇒ positive 

   Absolute value is 000 0000B = 0D 

   Hence, the integer is +0D 

Example 4 : Suppose that n=8 and the binary representation is 1 000 

0000B. 

   Sign bit is 1 ⇒ negative 
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   Absolute value is 000 0000B = 0D 

   Hence, the integer is -0D 

The drawbacks of sign-magnitude representation are: 

1. There are two representations (0000 0000B and 1000 0000B) for the 

number zero, which could lead to inefficiency and confusion. 

2. Positive and negative integers need to be processed separately. 

2.4  n-bit Sign Integers in 1's Complement 

Representation 

In 1's complement representation: 

 Again, the most significant bit (msb) is the sign bit, with value of 0 

representing positive integers and 1 representing negative integers. 

 The remaining n-1 bits represents the magnitude of the integer, as 

follows: 

o for positive integers, the absolute value of the integer is equal to 

"the magnitude of the (n-1)-bit binary pattern". 

o for negative integers, the absolute value of the integer is equal to 

"the magnitude of the complement (inverse) of the (n-1)-bit binary 

pattern" (hence called 1's complement). 

  

Example 1 : Suppose that n=8 and the binary representation 0 100 0001B. 

   Sign bit is 0 ⇒ positive 

   Absolute value is 100 0001B = 65D 

   Hence, the integer is +65D 

Example 2 : Suppose that n=8 and the binary representation 1 000 0001B. 

   Sign bit is 1 ⇒ negative 

   Absolute value is the complement of 000 0001B, i.e., 111 1110B = 126D 

   Hence, the integer is -126D 

Example 3 : Suppose that n=8 and the binary representation 0 000 0000B. 

   Sign bit is 0 ⇒ positive 
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   Absolute value is 000 0000B = 0D 

   Hence, the integer is +0D 

Example 4 : Suppose that n=8 and the binary representation 1 111 1111B. 

   Sign bit is 1 ⇒ negative 

   Absolute value is the complement of 111 1111B, i.e., 000 0000B = 0D 

   Hence, the integer is -0D 

 

Again, the drawbacks are: 

1. There are two representations (0000 0000B and 1111 1111B) for zero. 

2. The positive integers and negative integers need to be processed 

separately. 

2.5  n-bit Sign Integers in 2's Complement 

Representation 

In 2's complement representation: 

 Again, the most significant bit (msb) is the sign bit, with value of 0 

representing positive integers and 1 representing negative integers. 

 The remaining n-1 bits represents the magnitude of the integer, as 

follows: 

o for positive integers, the absolute value of the integer is equal to 

"the magnitude of the (n-1)-bit binary pattern". 

o for negative integers, the absolute value of the integer is equal to 

"the magnitude of the complement of the (n-1)-bit binary 

pattern plus one" (hence called 2's complement). 

Example 1 : Suppose that n=8 and the binary representation 0 100 0001B. 

   Sign bit is 0 ⇒ positive 

   Absolute value is 100 0001B = 65D 

   Hence, the integer is +65D 

Example 2 : Suppose that n=8 and the binary representation 1 000 0001B. 

   Sign bit is 1 ⇒ negative 
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   Absolute value is the complement of 000 0001B plus 1, i.e., 111 1110B + 1B = 
127D 

   Hence, the integer is -127D 

Example 3 : Suppose that n=8 and the binary representation 0 000 0000B. 

   Sign bit is 0 ⇒ positive 

   Absolute value is 000 0000B = 0D 

   Hence, the integer is +0D 

Example 4 : Suppose that n=8 and the binary representation 1 111 1111B. 

   Sign bit is 1 ⇒ negative 

   Absolute value is the complement of 111 1111B plus 1, i.e., 000 0000B + 1B = 
1D 

   Hence, the integer is -1D 

 

2.6  Computers use 2's Complement Representation for 

Signed Integers 

We have discussed three representations for signed integers: signed-

magnitude, 1's complement and 2's complement. Computers use 2's 

complement in representing signed integers. This is because: 

1. There is only one representation for the number zero in 2's 

complement, instead of two representations in sign-magnitude and 

1's complement. 

2. Positive and negative integers can be treated together in addition 

and subtraction. Subtraction can be carried out using the "addition 

logic". 

Example 1: Addition of Two Positive Integers:  Suppose that n=8, 
65D + 5D = 70D 

65D →    0100 0001B 

 5D →    0000 0101B(+ 

          0100 0110B    → 70D (OK) 
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Example 2: Subtraction is treated as Addition of a Positive and 

a Negative Integers:  Suppose that n=8, 5D - 5D = 65D + (-5D) = 60D 

65D →    0100 0001B 

-5D →    1111 1011B(+ 

          0011 1100B    → 60D (discard carry - OK) 

Example 3: Addition of Two Negative Integers:  Suppose that n=8, 
-65D - 5D = (-65D) + (-5D) = -70D 

-65D →    1011 1111B 

 -5D →    1111 1011B(+ 

           1011 1010B    → -70D (discard carry - OK) 

Because of the fixed precision (i.e., fixed number of bits), an n-bit 2's 

complement signed integer has a certain range. For example, for n=8, the 

range of 2's complement signed integers is -128 to +127. During addition 

(and subtraction), it is important to check whether the result exceeds this 

range, in other words, whether overflow or underflow has occurred. 

Example 4: Overflow: Suppose that n=8, 127D + 2D = 129D (overflow - 

beyond the range) 

127D →    0111 1111B 

  2D →    0000 0010B(+ 

           1000 0001B    → -127D (wrong) 

Example 5: Underflow: Suppose that n=8, -125D - 5D = -

130D (underflow - below the range) 

-125D →    1000 0011B 

  -5D →    1111 1011B(+ 

            0111 1110B    → +126D (wrong) 
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The following diagram explains how the 2's complement works. By re-

arranging the number line, values from -128 to +127 are represented 

contiguously by ignoring the carry bit. 

 

 

 

 

 

2.7  Range of n-bit 2's Complement Signed Integers 

An n-bit 2's complement signed integer can represent integers from -

2^(n-1) to +2^(n-1)-1, as tabulated. Take note that the scheme can 

represent all the integers within the range, without any gap. In other 

words, there is no missing integers within the supported range. 

 

 

 

n minimum maximum 

8 -(2^7)  (=-128) +(2^7)-1  (=+127) 

16 -(2^15) (=-32,768) +(2^15)-1 (=+32,767) 

32 -(2^31) (=-2,147,483,648) +(2^31)-1 (=+2,147,483,647)(9+ 
digits) 

64 -(2^63) (=-
9,223,372,036,854,775,808) 

+(2^63)-1 
(=+9,223,372,036,854,775,807)(18+ 
digits) 

3.  Floating-Point Number Representation 

A floating-point number (or real number) can represent a very large 

(1.23×10^88) or a very small (1.23×10^-88) value. It could also represent very 

large negative number (-1.23×10^88) and very small negative number (-

1.23×10^88), as well as zero, as illustrated: 
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A floating-point number is typically expressed in the scientific notation, 

with a fraction (F), and an exponent (E) of a certain radix (r), in the form 

of F×r^E. Decimal numbers use radix of 10 (F×10^E); while binary numbers 

use radix of 2 (F×2^E). 

Representation of floating point number is not unique. For example, the 

number 55.66 can be represented as 5.566×10^1, 0.5566×10^2, 0.05566×10^3, 

and so on. The fractional part can be normalized. In the normalized form, 

there is only a single non-zero digit before the radix point. For example, 

decimal number 123.4567 can be normalized as 1.234567×10^2; binary 

number 1010.1011B can be normalized as 1.0101011B×2^3. 

It is important to note that floating-point numbers suffer from loss of 

precision when represented with a fixed number of bits (e.g., 32-bit or 64-

bit). This is because there are infinite number of real numbers (even within 

a small range of says 0.0 to 0.1). On the other hand, a n-bit binary pattern 

can represent a finite 2^n distinct numbers. Hence, not all the real numbers 

can be represented. The nearest approximation will be used instead, 

resulted in loss of accuracy. 

It is also important to note that floating number arithmetic is very much 

less efficient than integer arithmetic. It could be speed up with a so-called 

dedicated floating-point co-processor. Hence, use integers if your 

application does not require floating-point numbers. 

In computers, floating-point numbers are represented in scientific 

notation of fraction (F) and exponent (E) with a radix of 2, in the form 

of F×2^E. Both E and F can be positive as well as negative. Modern 

computers adopt IEEE 754 standard for representing floating-point 
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numbers. There are two representation schemes: 32-bit single-precision 

and 64-bit double-precision. 

3.1  IEEE-754 32-bit Single-Precision Floating-Point 

Numbers 

In 32-bit single-precision floating-point representation: 

 The most significant bit is the sign bit (S), with 0 for positive numbers 

and 1 for negative numbers. 

 The following 8 bits represent exponent (E). 

 The remaining 23 bits represents fraction (F). 

 


