
Data Representation
BHARAT SCHOOL OF BANKING-VELLORE

1. Number Systems

1.1 Decimal (Base 10) Number System

Decimal number system has ten symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9,

called digits. It uses positional notation. That is, the least-significant digit

(right-most digit) is of the order of 10^0 (units or ones), the second right-

most digit is of the order of 10^1 (tens), the third right-most digit is of the

order of 10^2 (hundreds), and so on. For example,

735 = 7×10^2 + 3×10^1 + 5×10^0

We shall denote a decimal number with an optional suffix D if ambiguity

arises.

1.2 Binary (Base 2) Number System

Binary number system has two symbols: 0 and 1, called bits. It is also

a positional notation, for example,

10110B = 1×2^4 + 0×2^3 + 1×2^2 + 1×2^1 + 0×2^0

We shall denote a binary number with a suffix B. Some programming

languages denote binary numbers with prefix 0b (e.g., 0b1001000), or

prefix b with the bits quoted (e.g., b'10001111').

A binary digit is called a bit. Eight bits is called a byte (why 8-bit unit?

Probably because 8=23).

1.3 Hexadecimal (Base 16) Number System

Hexadecimal number system uses 16 symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A,

B, C, D, E, and F, called hex digits. It is a positional notation, for example,

A3EH = 10×16^2 + 3×16^1 + 14×16^0

We shall denote a hexadecimal number (in short, hex) with a suffix H.

Some programming languages denote hex numbers with

prefix 0x (e.g., 0x1A3C5F), or prefix x with hex digit quoted (e.g., x'C3A4D98B').

Data Representation
BHARAT SCHOOL OF BANKING-VELLORE

Each hexadecimal digit is also called a hex digit. Most programming

languages accept lowercase 'a' to 'f' as well as uppercase 'A' to 'F'.

Computers uses binary system in their internal operations, as they are

built from binary digital electronic components. However, writing or

reading a long sequence of binary bits is cumbersome and error-prone.

Hexadecimal system is used as a compact form or shorthand for binary

bits. Each hex digit is equivalent to 4 binary bits, i.e., shorthand for 4 bits,

as follows:
0H (0000B) (0D) 1H (0001B) (1D) 2H (0010B) (2D) 3H (0011B) (3D)

4H (0100B) (4D) 5H (0101B) (5D) 6H (0110B) (6D) 7H (0111B) (7D)

8H (1000B) (8D) 9H (1001B) (9D) AH (1010B) (10D) BH (1011B) (11D)

CH (1100B) (12D) DH (1101B) (13D) EH (1110B) (14D) FH (1111B) (15D)

1.4 Conversion from Hexadecimal to Binary

Replace each hex digit by the 4 equivalent bits, for examples,

A3C5H = 1010 0011 1100 0101B

102AH = 0001 0000 0010 1010B

1.5 Conversion from Binary to Hexadecimal

Starting from the right-most bit (least-significant bit), replace each group

of 4 bits by the equivalent hex digit (pad the left-most bits with zero if

necessary), for examples,

1001001010B = 0010 0100 1010B = 24AH

10001011001011B = 0010 0010 1100 1011B = 22CBH

It is important to note that hexadecimal number provides a compact

form or shorthand for representing binary bits.

1.6 Conversion from Base r to Decimal (Base 10)

Given a n-digit base r number: dn-1 dn-2 dn-3 ... d3 d2 d1 d0 (base r), the

decimal equivalent is given by:

dn-1 × r^(n-1) + dn-2 × r^(n-2) + ... + d1 × r^1 + d0 × r^0

Data Representation
BHARAT SCHOOL OF BANKING-VELLORE

For examples,

A1C2H = 10×16^3 + 1×16^2 + 12×16^1 + 2 = 41410 (base 10)

10110B = 1×2^4 + 1×2^2 + 1×2^1 = 22 (base 10)

1.7 Conversion from Decimal (Base 10) to Base r

Use repeated division/remainder. For example,

To convert 261D to hexadecimal:

 261/16 => quotient=16 remainder=5

 16/16 => quotient=1 remainder=0

 1/16 => quotient=0 remainder=1 (quotient=0 stop)

 Hence, 261D = 105H

The above procedure is actually applicable to conversion between any 2

base systems. For example,

To convert 1023(base 4) to base 3:

 1023(base 4)/3 => quotient=25D remainder=0

 25D/3 => quotient=8D remainder=1

 8D/3 => quotient=2D remainder=2

 2D/3 => quotient=0 remainder=2 (quotient=0 stop)

 Hence, 1023(base 4) = 2210(base 3)

1.8 General Conversion between 2 Base Systems with

Fractional Part

1. Separate the integral and the fractional parts.

2. For the integral part, divide by the target radix repeatably, and collect

the ramainder in reverse order.

3. For the fractional part, multiply the fractional part by the target radix

repeatably, and collect the integral part in the same order.

Data Representation
BHARAT SCHOOL OF BANKING-VELLORE

Example 1:

Convert 18.6875D to binary

Integral Part = 18D

 18/2 => quotient=9 remainder=0

 9/2 => quotient=4 remainder=1

 4/2 => quotient=2 remainder=0

 2/2 => quotient=1 remainder=0

 1/2 => quotient=0 remainder=1 (quotient=0 stop)

 Hence, 18D = 10010B

Fractional Part = .6875D

 .6875*2=1.375 => whole number is 1

 .375*2=0.75 => whole number is 0

 .75*2=1.5 => whole number is 1

 .5*2=1.0 => whole number is 1

 Hence .6875D = .1011B

Therefore, 18.6875D = 10010.1011B

Example 2:

Convert 18.6875D to hexadecimal

Integral Part = 18D

 18/16 => quotient=1 remainder=2

 1/16 => quotient=0 remainder=1 (quotient=0 stop)

 Hence, 18D = 12H

Fractional Part = .6875D

 .6875*16=11.0 => whole number is 11D (BH)

 Hence .6875D = .BH

Data Representation
BHARAT SCHOOL OF BANKING-VELLORE

Therefore, 18.6875D = 12.BH

1.9 Exercises (Number Systems Conversion)

1. Convert the following decimal numbers

into binary and hexadecimal numbers:

a. 108

b. 4848

c. 9000

 Convert the following binary numbers into hexadecimal and decimal

numbers:

 . 1000011000

a. 10000000

b. 101010101010

 Convert the following hexadecimal numbers into binary and decimal

numbers:

 . ABCDE

a. 1234

b. 80F

Answers: You could use the Windows' Calculator (calc.exe) to carry out

number system conversion, by setting it to the scientific mode. (Run "calc"

⇒ Select "View" menu ⇒ Choose "Programmer" or "Scientific" mode.)

1. 1101100B, 1001011110000B, 10001100101000B, 6CH, 12F0H, 2328H.

2. 218H, 80H, AAAH, 536D, 128D, 2730D.

3. 10101011110011011110B, 1001000110100B, 100000001111B, 703710D, 4660D, 2063D.

Data Representation
BHARAT SCHOOL OF BANKING-VELLORE

2. Integer Representation

Integers are whole numbers or fixed-point numbers with the radix

point fixed after the least-significant bit. They are contrast to real

numbers or floating-point numbers, where the position of the radix point

varies. It is important to take note that integers and floating-point

numbers are treated differently in computers. They have different

representation and are processed differently (e.g., floating-point numbers

are processed in a so-called floating-point processor). Floating-point

numbers will be discussed later.

Computers use a fixed number of bits to represent an integer. The

commonly-used bit-lengths for integers are 8-bit, 16-bit, 32-bit or 64-bit.

Besides bit-lengths, there are two representation schemes for integers:

1. Unsigned Integers: can represent zero and positive integers.

2. Signed Integers: can represent zero, positive and negative integers.

Three representation schemes had been proposed for signed

integers:

a. Sign-Magnitude representation

b. 1's Complement representation

c. 2's Complement representation

You, as the programmer, need to decide on the bit-length and

representation scheme for your integers, depending on your application's

requirements. Suppose that you need a counter for counting a small

quantity from 0 up to 200, you might choose the 8-bit unsigned integer

scheme as there is no negative numbers involved.

Data Representation
BHARAT SCHOOL OF BANKING-VELLORE

2.1 n-bit Unsigned Integers

Unsigned integers can represent zero and positive integers, but not

negative integers. The value of an unsigned integer is interpreted as "the

magnitude of its underlying binary pattern".

Example 1: Suppose that n=8 and the binary pattern is 0100 0001B, the

value of this unsigned integer is 1×2^0 + 1×2^6 = 65D.

Example 2: Suppose that n=16 and the binary pattern is 0001 0000 0000

1000B, the value of this unsigned integer is 1×2^3 + 1×2^12 = 4104D.

Example 3: Suppose that n=16 and the binary pattern is 0000 0000 0000

0000B, the value of this unsigned integer is 0.

An n-bit pattern can represent 2^n distinct integers. An n-bit unsigned

integer can represent integers from 0 to (2^n)-1, as tabulated below:

N Minimum Maximum

8 0 (2^8)-1 (=255)

16 0 (2^16)-1 (=65,535)

32 0 (2^32)-1 (=4,294,967,295) (9+ digits)

64 0 (2^64)-1 (=18,446,744,073,709,551,615) (19+
digits)

2.2 Signed Integers

Signed integers can represent zero, positive integers, as well as negative

integers. Three representation schemes are available for signed integers:

1. Sign-Magnitude representation

2. 1's Complement representation

3. 2's Complement representation

Data Representation
BHARAT SCHOOL OF BANKING-VELLORE

In all the above three schemes, the most-significant bit (msb) is called

the sign bit. The sign bit is used to represent the sign of the integer - with

0 for positive integers and 1 for negative integers. The magnitude of the

integer, however, is interpreted differently in different schemes.

2.3 n-bit Sign Integers in Sign-Magnitude

Representation

In sign-magnitude representation:

 The most-significant bit (msb) is the sign bit, with value of 0

representing positive integer and 1 representing negative integer.

 The remaining n-1 bits represents the magnitude (absolute value) of

the integer. The absolute value of the integer is interpreted as "the

magnitude of the (n-1)-bit binary pattern".

Example 1 : Suppose that n=8 and the binary representation is 0 100

0001B.

 Sign bit is 0 ⇒ positive

 Absolute value is 100 0001B = 65D

 Hence, the integer is +65D

Example 2: Suppose that n=8 and the binary representation is 1 000

0001B.

 Sign bit is 1 ⇒ negative

 Absolute value is 000 0001B = 1D

 Hence, the integer is -1D

Example 3 : Suppose that n=8 and the binary representation is 0 000

0000B.

 Sign bit is 0 ⇒ positive

 Absolute value is 000 0000B = 0D

 Hence, the integer is +0D

Example 4 : Suppose that n=8 and the binary representation is 1 000

0000B.

 Sign bit is 1 ⇒ negative

Data Representation
BHARAT SCHOOL OF BANKING-VELLORE

 Absolute value is 000 0000B = 0D

 Hence, the integer is -0D

The drawbacks of sign-magnitude representation are:

1. There are two representations (0000 0000B and 1000 0000B) for the

number zero, which could lead to inefficiency and confusion.

2. Positive and negative integers need to be processed separately.

2.4 n-bit Sign Integers in 1's Complement

Representation

In 1's complement representation:

 Again, the most significant bit (msb) is the sign bit, with value of 0

representing positive integers and 1 representing negative integers.

 The remaining n-1 bits represents the magnitude of the integer, as

follows:

o for positive integers, the absolute value of the integer is equal to

"the magnitude of the (n-1)-bit binary pattern".

o for negative integers, the absolute value of the integer is equal to

"the magnitude of the complement (inverse) of the (n-1)-bit binary

pattern" (hence called 1's complement).

Example 1 : Suppose that n=8 and the binary representation 0 100 0001B.

 Sign bit is 0 ⇒ positive

 Absolute value is 100 0001B = 65D

 Hence, the integer is +65D

Example 2 : Suppose that n=8 and the binary representation 1 000 0001B.

 Sign bit is 1 ⇒ negative

 Absolute value is the complement of 000 0001B, i.e., 111 1110B = 126D

 Hence, the integer is -126D

Example 3 : Suppose that n=8 and the binary representation 0 000 0000B.

 Sign bit is 0 ⇒ positive

Data Representation
BHARAT SCHOOL OF BANKING-VELLORE

 Absolute value is 000 0000B = 0D

 Hence, the integer is +0D

Example 4 : Suppose that n=8 and the binary representation 1 111 1111B.

 Sign bit is 1 ⇒ negative

 Absolute value is the complement of 111 1111B, i.e., 000 0000B = 0D

 Hence, the integer is -0D

Again, the drawbacks are:

1. There are two representations (0000 0000B and 1111 1111B) for zero.

2. The positive integers and negative integers need to be processed

separately.

2.5 n-bit Sign Integers in 2's Complement

Representation

In 2's complement representation:

 Again, the most significant bit (msb) is the sign bit, with value of 0

representing positive integers and 1 representing negative integers.

 The remaining n-1 bits represents the magnitude of the integer, as

follows:

o for positive integers, the absolute value of the integer is equal to

"the magnitude of the (n-1)-bit binary pattern".

o for negative integers, the absolute value of the integer is equal to

"the magnitude of the complement of the (n-1)-bit binary

pattern plus one" (hence called 2's complement).

Example 1 : Suppose that n=8 and the binary representation 0 100 0001B.

 Sign bit is 0 ⇒ positive

 Absolute value is 100 0001B = 65D

 Hence, the integer is +65D

Example 2 : Suppose that n=8 and the binary representation 1 000 0001B.

 Sign bit is 1 ⇒ negative

Data Representation
BHARAT SCHOOL OF BANKING-VELLORE

 Absolute value is the complement of 000 0001B plus 1, i.e., 111 1110B + 1B =
127D

 Hence, the integer is -127D

Example 3 : Suppose that n=8 and the binary representation 0 000 0000B.

 Sign bit is 0 ⇒ positive

 Absolute value is 000 0000B = 0D

 Hence, the integer is +0D

Example 4 : Suppose that n=8 and the binary representation 1 111 1111B.

 Sign bit is 1 ⇒ negative

 Absolute value is the complement of 111 1111B plus 1, i.e., 000 0000B + 1B =
1D

 Hence, the integer is -1D

2.6 Computers use 2's Complement Representation for

Signed Integers

We have discussed three representations for signed integers: signed-

magnitude, 1's complement and 2's complement. Computers use 2's

complement in representing signed integers. This is because:

1. There is only one representation for the number zero in 2's

complement, instead of two representations in sign-magnitude and

1's complement.

2. Positive and negative integers can be treated together in addition

and subtraction. Subtraction can be carried out using the "addition

logic".

Example 1: Addition of Two Positive Integers: Suppose that n=8,
65D + 5D = 70D

65D → 0100 0001B

 5D → 0000 0101B(+

 0100 0110B → 70D (OK)

Data Representation
BHARAT SCHOOL OF BANKING-VELLORE

Example 2: Subtraction is treated as Addition of a Positive and

a Negative Integers: Suppose that n=8, 5D - 5D = 65D + (-5D) = 60D

65D → 0100 0001B

-5D → 1111 1011B(+

 0011 1100B → 60D (discard carry - OK)

Example 3: Addition of Two Negative Integers: Suppose that n=8,
-65D - 5D = (-65D) + (-5D) = -70D

-65D → 1011 1111B

 -5D → 1111 1011B(+

 1011 1010B → -70D (discard carry - OK)

Because of the fixed precision (i.e., fixed number of bits), an n-bit 2's

complement signed integer has a certain range. For example, for n=8, the

range of 2's complement signed integers is -128 to +127. During addition

(and subtraction), it is important to check whether the result exceeds this

range, in other words, whether overflow or underflow has occurred.

Example 4: Overflow: Suppose that n=8, 127D + 2D = 129D (overflow -

beyond the range)

127D → 0111 1111B

 2D → 0000 0010B(+

 1000 0001B → -127D (wrong)

Example 5: Underflow: Suppose that n=8, -125D - 5D = -

130D (underflow - below the range)

-125D → 1000 0011B

 -5D → 1111 1011B(+

 0111 1110B → +126D (wrong)

Data Representation
BHARAT SCHOOL OF BANKING-VELLORE

The following diagram explains how the 2's complement works. By re-

arranging the number line, values from -128 to +127 are represented

contiguously by ignoring the carry bit.

2.7 Range of n-bit 2's Complement Signed Integers

An n-bit 2's complement signed integer can represent integers from -

2^(n-1) to +2^(n-1)-1, as tabulated. Take note that the scheme can

represent all the integers within the range, without any gap. In other

words, there is no missing integers within the supported range.

n minimum maximum

8 -(2^7) (=-128) +(2^7)-1 (=+127)

16 -(2^15) (=-32,768) +(2^15)-1 (=+32,767)

32 -(2^31) (=-2,147,483,648) +(2^31)-1 (=+2,147,483,647)(9+
digits)

64 -(2^63) (=-
9,223,372,036,854,775,808)

+(2^63)-1
(=+9,223,372,036,854,775,807)(18+
digits)

3. Floating-Point Number Representation

A floating-point number (or real number) can represent a very large

(1.23×10^88) or a very small (1.23×10^-88) value. It could also represent very

large negative number (-1.23×10^88) and very small negative number (-

1.23×10^88), as well as zero, as illustrated:

Data Representation
BHARAT SCHOOL OF BANKING-VELLORE

A floating-point number is typically expressed in the scientific notation,

with a fraction (F), and an exponent (E) of a certain radix (r), in the form

of F×r^E. Decimal numbers use radix of 10 (F×10^E); while binary numbers

use radix of 2 (F×2^E).

Representation of floating point number is not unique. For example, the

number 55.66 can be represented as 5.566×10^1, 0.5566×10^2, 0.05566×10^3,

and so on. The fractional part can be normalized. In the normalized form,

there is only a single non-zero digit before the radix point. For example,

decimal number 123.4567 can be normalized as 1.234567×10^2; binary

number 1010.1011B can be normalized as 1.0101011B×2^3.

It is important to note that floating-point numbers suffer from loss of

precision when represented with a fixed number of bits (e.g., 32-bit or 64-

bit). This is because there are infinite number of real numbers (even within

a small range of says 0.0 to 0.1). On the other hand, a n-bit binary pattern

can represent a finite 2^n distinct numbers. Hence, not all the real numbers

can be represented. The nearest approximation will be used instead,

resulted in loss of accuracy.

It is also important to note that floating number arithmetic is very much

less efficient than integer arithmetic. It could be speed up with a so-called

dedicated floating-point co-processor. Hence, use integers if your

application does not require floating-point numbers.

In computers, floating-point numbers are represented in scientific

notation of fraction (F) and exponent (E) with a radix of 2, in the form

of F×2^E. Both E and F can be positive as well as negative. Modern

computers adopt IEEE 754 standard for representing floating-point

Data Representation
BHARAT SCHOOL OF BANKING-VELLORE

numbers. There are two representation schemes: 32-bit single-precision

and 64-bit double-precision.

3.1 IEEE-754 32-bit Single-Precision Floating-Point

Numbers

In 32-bit single-precision floating-point representation:

 The most significant bit is the sign bit (S), with 0 for positive numbers

and 1 for negative numbers.

 The following 8 bits represent exponent (E).

 The remaining 23 bits represents fraction (F).

