
BHARAT SCHOOL OF BANKING- VELLORE-1
DATABASE MANAGEMENT SYSTEM

Overview of Database

A Database is a collection of related data organised in a way that data can be

easily accessed, managed and updated. Any piece of information can be a data,

for example name of your school. Database is actualy a place where related

piece of information is stored and various operations can be performed on it.

DBMS

A DBMS is a software that allows creation, definition and manipulation of

database. Dbms is actualy a tool used to perform any kind of operation on data

in database. Dbms also provides protection and security to database. It

maintains data consistency in case of multiple users. Here are some examples of

popular dbms, MySql, Oracle, Sybase, Microsoft Access and IBM DB2 etc.

Components of Database System

The database system can be divided into four components.

 Users : Users may be of various type such as DB administrator, System

developer and End users.

BHARAT SCHOOL OF BANKING- VELLORE-1
DATABASE MANAGEMENT SYSTEM

 Database application : Database application may be Personal,

Departmental, Enterprise and Internal

 DBMS : Software that allow users to define, create and manages database

access, Ex: MySql, Oracle etc.

 Database : Collection of logical data.

Functions of DBMS

 Provides data Independence

 Concurrency Control

 Provides Recovery services

 Provides Utility services

 Provides a clear and logical view of the process that manipulates data.

Advantages of DBMS

 Segregation of applicaion program.

 Minimal data duplicacy.

 Easy retrieval of data.

 Reduced development time and maintainance need.

Disadvantages of DBMS

 Complexity

 Costly

 Large in size

BHARAT SCHOOL OF BANKING- VELLORE-1
DATABASE MANAGEMENT SYSTEM

Database Architecture

Database architecture is logically divided into two types.

1. Logical two-tier Client / Server architecture

2. Logical three-tier Client / Server architecture

Two-tier Client / Server Architecture

Two-tier Client / Server architecture is used for User Interface program and

Application Programs that runs on client side. An interface called ODBC(Open

Database Connectivity) provides an API that allow client side program to call

the dbms. Most DBMS vendors provide ODBC drivers. A client program may

connect to several DBMS's. In this architecture some variation of client is also

possible for example in some DBMS's more functionality is transferred to the

client including data dictionary, optimization etc. Such clients are called Data

server.

BHARAT SCHOOL OF BANKING- VELLORE-1
DATABASE MANAGEMENT SYSTEM

Three-tier Client / Server Architecture

Three-tier Client / Server database architecture is commonly used architecture

for web applications. Intermediate layer called Application server or Web

Server stores the web connectivty software and the business logic(constraints)

part of application used to access the right amount of data from the database

server. This layer acts like medium for sending partially processed data between

the database server and the client.

Database Model

A Database model defines the logical design of data. The model describes the

relationships between different parts of the data. Historically, in database

design, three models are commonly used. They are,

 Hierarchical Model

 Network Model

 Relational Model

BHARAT SCHOOL OF BANKING- VELLORE-1
DATABASE MANAGEMENT SYSTEM

Hierarchical Model

In this model each entity has only one parent but can have several children . At

the top of hierarchy there is only one entity which is called Root.

Network Model

In the network model, entities are organised in a graph,in which some entities

can be accessed through several path

BHARAT SCHOOL OF BANKING- VELLORE-1
DATABASE MANAGEMENT SYSTEM

Relational Model

In this model, data is organised in two-dimesional tables called relations. The

tables or relation are related to each other.

Codd's Rule

E.F Codd was a Computer Scientist who invented Relational model for

Database management. Based on relational model, Relation database was

created. Codd proposed 13 rules popularly known as Codd's 12 rules to test

DBMS's concept against his relational model. Codd's rule actualy define what

quality a DBMS requires in order to become a Relational Database

Management System(RDBMS). Till now, there is hardly any commercial

product that follows all the 13 Codd's rules. Even Oracle follows only eight and

half out(8.5) of 13. The Codd's 12 rules are as follows.

BHARAT SCHOOL OF BANKING- VELLORE-1
DATABASE MANAGEMENT SYSTEM

Rule zero

This rule states that for a system to qualify as an RDBMS, it must be able to

manage database entirely through the relational capabilities.

Rule 1 : Information rule

All information(including metadata) is to be represented as stored data in cells

of tables. The rows and columns have to be strictly unordered.

Rule 2 : Guaranted Access

Each unique piece of data(atomic value) should be accesible by : Table Name +

primary key(Row) + Attribute(column).

NOTE : Ability to directly access via POINTER is a violation of this rule.

Rule 3 : Systemetic treatment of NULL

Null has several meanings, it can mean missing data, not applicable or no value.

It should be handled consistently. Primary key must not be null. Expression

on NULL must give null.

Rule 4 : Active Online Catalog

Database dictionary(catalog) must have description of Database. Catalog to be

governed by same rule as rest of the database. The same query language to be

used on catalog as on application database.

Rule 5 : Powerful language

One well defined language must be there to provide all manners of access to

data. Example: SQL. If a file supporting table can be accessed by any manner

except SQL interface, then its a violation to this rule.

BHARAT SCHOOL OF BANKING- VELLORE-1
DATABASE MANAGEMENT SYSTEM

Rule 6 : View Updation rule

All view that are theoretically updatable should be updatable by the system.

Rule 7 : Relational Level Operation

There must be Insert, Delete, Update operations at each level of relations. Set

operation like Union, Intersection and minus should also be supported.

Rule 8 : Physical Data Independence

The physical storage of data should not matter to the system. If say, some file

supporting table were renamed or moved from one disk to another, it should not

effect the application.

Rule 9 : Logical Data Independence

If there is change in the logical structure(table structures) of the database the

user view of data should not change. Say, if a table is split into two tables, a

new view should give result as the join of the two tables. This rule is most

difficult to satisfy.

Rule 10 : Integrity Independence

The database should be able to conforce its own integrity rather than using other

programs. Key and Check constraints, trigger etc should be stored in Data

Dictionary. This also make RDBMS independent of front-end.

Rule 11 : Distribution Independence

A database should work properly regardless of its distribution across a network.

This lays foundation of distributed database.

BHARAT SCHOOL OF BANKING- VELLORE-1
DATABASE MANAGEMENT SYSTEM

Rule 12 : Non subversion rule

If low level access is allowed to a system it should not be able to subvert or

bypass integrity rule to change data. This can be achieved by some sort of

looking or encryption.

RDBMS Concepts

A Relational Database management System(RDBMS) is a database

management system based on relational model introduced by E.F Codd. In

relational model, data is represented in terms of tuples(rows).

RDBMS is used to manage Relational database. Relational database is a

collection of organized set of tables from which data can be accessed easily.

Relational Database is most commonly used database. It consists of number of

tables and each table has its own primary key.

What is Table ?

In Relational database, a table is a collection of data elements organised in

terms of rows and columns. A table is also considered as convenient

representation of relations. But a table can have duplicate tuples while a

true relation cannot have duplicate tuples. Table is the most simplest form of

data storage. Below is an example of Employee table.

ID Name Age Salary

1 Adam 34 13000

2 Alex 28 15000

3 Stuart 20 18000

4 Ross 42 19020

BHARAT SCHOOL OF BANKING- VELLORE-1
DATABASE MANAGEMENT SYSTEM

What is a Record ?

A single entry in a table is called a Record or Row. A Record in a table

represents set of related data. For example, the above Employee table has 4

records. Following is an example of single record.

1 Adam 34 13000

What is Field ?

A table consists of several records(row), each record can be broken into several

smaller entities known as Fields. The above Employee table consist of four

fields, ID, Name, Age and Salary.

What is a Column ?

In Relational table, a column is a set of value of a particular type. The

term Attribute is also used to represent a column. For example, in Employee

table, Name is a column that represent names of employee.

Name

Adam

Alex

Stuart

Ross

BHARAT SCHOOL OF BANKING- VELLORE-1
DATABASE MANAGEMENT SYSTEM

Database Keys

Keys are very important part of Relational database. They are used to establish

and identify relation between tables. They also ensure that each record within a

table can be uniquely identified by combination of one or more fields within a

table.

Super Key

Super Key is defined as a set of attributes within a table that uniquely identifies

each record within a table. Super Key is a superset of Candidate key.

Candidate Key

Candidate keys are defined as the set of fields from which primary key can be

selected. It is an attribute or set of attribute that can act as a primary key for a

table to uniquely identify each record in that table.

Primary Key

Primary key is a candidate key that is most appropriate to become main key of

the table. It is a key that uniquely identify each record in a table.

BHARAT SCHOOL OF BANKING- VELLORE-1
DATABASE MANAGEMENT SYSTEM

Composite Key

Key that consist of two or more attributes that uniquely identify an entity

occurance is called Composite key. But any attribute that makes up

the Composite key is not a simple key in its own.

Secondary or Alternative key

The candidate key which are not selected for primary key are known as

secondary keys or alternative keys

Non-key Attribute

Non-key attributes are attributes other than candidate key attributes in a table.

Non-prime Attribute

Non-prime Attributes are attributes other than Primary attribute.

BHARAT SCHOOL OF BANKING- VELLORE-1
DATABASE MANAGEMENT SYSTEM

Normalization of Database

Database Normalisation is a technique of organizing the data in the database.

Normalization is a systematic approach of decomposing tables to eliminate data

redundancy and undesirable characteristics like Insertion, Update and Deletion

Anamolies. It is a multi-step process that puts data into tabular form by

removing duplicated data from the relation tables.

Normalization is used for mainly two purpose,

 Eliminating reduntant(useless) data.

 Ensuring data dependencies make sense i.e data is logically stored.

Problem Without Normalization

Without Normalization, it becomes difficult to handle and update the database,

without facing data loss. Insertion, Updation and Deletion Anamolies are very

frequent if Database is not Normalized. To understand these anomalies let us

take an example of Student table.

S_id S_Name S_Address Subject_opted

401 Adam Noida Bio

402 Alex Panipat Maths

403 Stuart Jammu Maths

404 Adam Noida Physics

BHARAT SCHOOL OF BANKING- VELLORE-1
DATABASE MANAGEMENT SYSTEM

 Updation Anamoly : To update address of a student who occurs twice or

more than twice in a table, we will have to update S_Address column in

all the rows, else data will become inconsistent.

 Insertion Anamoly : Suppose for a new admission, we have a Student

id(S_id), name and address of a student but if student has not opted for

any subjects yet then we have to insert NULL there, leading to Insertion

Anamoly.

 Deletion Anamoly : If (S_id) 401 has only one subject and temporarily

he drops it, when we delete that row, entire student record will be deleted

along with it.

Normalization Rule

Normalization rule are divided into following normal form.

1. First Normal Form

2. Second Normal Form

3. Third Normal Form

4. BCNF

First Normal Form (1NF)

As per First Normal Form, no two Rows of data must contain repeating group

of information i.e each set of column must have a unique value, such that

multiple columns cannot be used to fetch the same row. Each table should be

organized into rows, and each row should have a primary key that distinguishes

it as unique.

The Primary key is usually a single column, but sometimes more than one

column can be combined to create a single primary key. For example consider a

table which is not in First normal form

BHARAT SCHOOL OF BANKING- VELLORE-1
DATABASE MANAGEMENT SYSTEM

Student Table :

Student Age Subject

Adam 15 Biology, Maths

Alex 14 Maths

Stuart 17 Maths

In First Normal Form, any row must not have a column in which more than one

value is saved, like separated with commas. Rather than that, we must separate

such data into multiple rows.

Student Table following 1NF will be :

Student Age Subject

Adam 15 Biology

Adam 15 Maths

Alex 14 Maths

Stuart 17 Maths

Using the First Normal Form, data redundancy increases, as there will be many

columns with same data in multiple rows but each row as a whole will be

unique.

BHARAT SCHOOL OF BANKING- VELLORE-1
DATABASE MANAGEMENT SYSTEM

Second Normal Form (2NF)

As per the Second Normal Form there must not be any partial dependency of

any column on primary key. It means that for a table that has concatenated

primary key, each column in the table that is not part of the primary key must

depend upon the entire concatenated key for its existence. If any column

depends only on one part of the concatenated key, then the table fails Second

normal form.

In example of First Normal Form there are two rows for Adam, to include

multiple subjects that he has opted for. While this is searchable, and follows

First normal form, it is an inefficient use of space. Also in the above Table in

First Normal Form, while the candidate key is {Student, Subject}, Age of

Student only depends on Student column, which is incorrect as per Second

Normal Form. To achieve second normal form, it would be helpful to split out

the subjects into an independent table, and match them up using the student

names as foreign keys.

New Student Table following 2NF will be :

Student Age

Adam 15

Alex 14

Stuart 17

In Student Table the candidate key will be Student column, because all other

column i.e Age is dependent on it.

New Subject Table introduced for 2NF will be :

Student Subject

Adam Biology

BHARAT SCHOOL OF BANKING- VELLORE-1
DATABASE MANAGEMENT SYSTEM

Adam Maths

Alex Maths

Stuart Maths

In Subject Table the candidate key will be {Student, Subject} column. Now,

both the above tables qualifies for Second Normal Form and will never suffer

from Update Anomalies. Although there are a few complex cases in which table

in Second Normal Form suffers Update Anomalies, and to handle those

scenarios Third Normal Form is there.

Third Normal Form (3NF)

Third Normal form applies that every non-prime attribute of table must be

dependent on primary key, or we can say that, there should not be the case that a

non-prime attribute is determined by another non-prime attribute. So

this transitive functional dependency should be removed from the table and also

the table must be in Second Normal form. For example, consider a table with

following fields.

Student_Detail Table :

Student_id Student_name DOB Street city State Zip

In this table Student_id is Primary key, but street, city and state depends upon

Zip. The dependency between zip and other fields is called transitive

dependency. Hence to apply 3NF, we need to move the street, city and state to

new table, with Zip as primary key.

New Student_Detail Table :

Student_id Student_name DOB Zip

BHARAT SCHOOL OF BANKING- VELLORE-1
DATABASE MANAGEMENT SYSTEM

Address Table :

Zip Street city state

The advantage of removing transtive dependency is,

 Amount of data duplication is reduced.

 Data integrity achieved.

Boyce and Codd Normal Form (BCNF)

Boyce and Codd Normal Form is a higher version of the Third Normal form.

This form deals with certain type of anamoly that is not handled by 3NF. A 3NF

table which does not have multiple overlapping candidate keys is said to be in

BCNF. For a table to be in BCNF, following conditions must be satisfied:

 R must be in 3rd Normal Form

 and, for each functional dependency (X -> Y), X should be a super Key.

BHARAT SCHOOL OF BANKING- VELLORE-1
DATABASE MANAGEMENT SYSTEM

E-R Diagram

ER-Diagram is a visual representation of data that describes how data is related

to each other.

Symbols and Notations

BHARAT SCHOOL OF BANKING- VELLORE-1
DATABASE MANAGEMENT SYSTEM

Components of E-R Diagram

The E-R diagram has three main components.

1) Entity

An Entity can be any object, place, person or class. In E-R Diagram,

an entity is represented using rectangles. Consider an example of an

Organisation. Employee, Manager, Department, Product and many more can be

taken as entities from an Organisation.

Weak Entity

Weak entity is an entity that depends on another entity. Weak entity doen't have

key attribute of their own. Double rectangle represents weak entity.

BHARAT SCHOOL OF BANKING- VELLORE-1
DATABASE MANAGEMENT SYSTEM

2) Attribute

An Attribute describes a property or characterstic of an entity. For example,

Name, Age, Address etc can be attributes of a Student. An attribute is

represented using eclipse.

Key Attribute

Key attribute represents the main characterstic of an Entity. It is used to

represent Primary key. Ellipse with underlying lines represent Key Attribute.

BHARAT SCHOOL OF BANKING- VELLORE-1
DATABASE MANAGEMENT SYSTEM

Composite Attribute

An attribute can also have their own attributes. These attributes are known

as Composite attribute.

3) Relationship

A Relationship describes relations between entities. Relationship is represented

using diamonds.

There are three types of relationship that exist between Entities.

 Binary Relationship

 Recursive Relationship

 Ternary Relationship

BHARAT SCHOOL OF BANKING- VELLORE-1
DATABASE MANAGEMENT SYSTEM

Binary Relationship

Binary Relationship means relation between two Entities. This is further divided

into three types.

1. One to One : This type of relationship is rarely seen in real world.

The above example describes that one student can enroll only for one course

and a course will also have only one Student. This is not what you will usually

see in relationship.

2. One to Many : It reflects business rule that one entity is associated with

many number of same entity. The example for this relation might sound a

little weird, but this menas that one student can enroll to many courses,

but one course will have one Student.

BHARAT SCHOOL OF BANKING- VELLORE-1
DATABASE MANAGEMENT SYSTEM

The arrows in the diagram describes that one student can enroll for only one

course.

3. Many to One : It reflects business rule that many entities can be

associated with just one entity. For example, Student enrolls for only one

Course but a Course can have many Students.

4. Many to Many :

The above diagram represents that many students can enroll for more than one

courses.

Recursive Relationship

When an Entity is related with itself it is known as Recursive Relationship.

BHARAT SCHOOL OF BANKING- VELLORE-1
DATABASE MANAGEMENT SYSTEM

Ternary Relationship

Relationship of degree three is called Ternary relationship.

Generalization

Generalization is a bottom-up approach in which two lower level entities

combine to form a higher level entity. In generalization, the higher level entity

can also combine with other lower level entity to make further higher level

entity.

Introduction to SQL

Structure Query Language(SQL) is a programming language used for storing

and managing data in RDBMS. SQL was the first commercial language

introduced for E.F Codd's Relational model. Today almost all RDBMS(MySql,

Oracle, Infomix, Sybase, MS Access) uses SQL as the standard database

language. SQL is used to perform all type of data operations in RDBMS.

SQL Command

SQL defines following data languages to manipulate data of RDBMS.

DDL : Data Definition Language

All DDL commands are auto-committed. That means it saves all the changes

permanently in the database.

Command Description

create to create new table or database

alter for alteration

BHARAT SCHOOL OF BANKING- VELLORE-1
DATABASE MANAGEMENT SYSTEM

truncate delete data from table

drop to drop a table

rename to rename a table

DML : Data Manipulation Language

DML commands are not auto-committed. It means changes are not permanent

to database, they can be rolled back.

Command Description

insert to insert a new row

update to update existing row

delete to delete a row

merge merging two rows or two tables

TCL : Transaction Control Language

These commands are to keep a check on other commands and their affect on the

database. These commands can annul changes made by other commands by

rolling back to original state. It can also make changes permanent.

Command Description

commit to permanently save

BHARAT SCHOOL OF BANKING- VELLORE-1
DATABASE MANAGEMENT SYSTEM

rollback to undo change

savepoint to save temporarily

DCL : Data Control Language

Data control language provides command to grant and take back authority.

Command Description

grant grant permission of right

revoke take back permission.

DQL : Data Query Language

Command Description

select retrieve records from one or more table

Generalization

Generalization is a bottom-up approach in which two lower level entities

combine to form a higher level entity. In generalization, the higher level entity

can also combine with other lower level entit

y to make further higher level

entity.

BHARAT SCHOOL OF BANKING- VELLORE-1
DATABASE MANAGEMENT SYSTEM

Specialization

Specialization is opposite to Generalization. It is a top-down approach in which

one higher level entity can be broken down into two lower level entity. In

specialization, some higher level entities may not have lower-level entity sets at

all.

Aggregration

Aggregration is a process when relation between two entity is treated as a single

entity. Here the relation between Center and Course, is acting as an Entity in

relation with Visitor.

BHARAT SCHOOL OF BANKING- VELLORE-1
DATABASE MANAGEMENT SYSTEM

TCL command

Transaction Control Language(TCL) commands are used to manage

transactions in database.These are used to manage the changes made by DML

statements. It also allows statements to be grouped together into logical

transactions.

Commit command

Commit command is used to permanently save any transaaction into database.

Following is Commit command's syntax,

commit;

Rollback command

This command restores the database to last commited state. It is also use with

savepoint command to jump to a savepoint in a transaction.

Following is Rollback command's syntax,

rollback to savepoint-name;

Savepoint command

savepoint command is used to temporarily save a transaction so that you can

rollback to that point whenever necessary.

Following is savepoint command's syntax,

savepoint savepoint-name;

BHARAT SCHOOL OF BANKING- VELLORE-1
DATABASE MANAGEMENT SYSTEM

Example of Savepoint and Rollback

Following is the class table,

ID NAME

1 abhi

2 adam

4 alex

Lets use some SQL queries on the above table and see the results.

INSERT into class values(5,'Rahul');

commit;

UPDATE class set name='abhijit' where id='5';

savepoint A;

INSERT into class values(6,'Chris');

savepoint B;

INSERT into class values(7,'Bravo');

savepoint C;

SELECT * from class;

The resultant table will look like,

ID NAME

1 abhi

BHARAT SCHOOL OF BANKING- VELLORE-1
DATABASE MANAGEMENT SYSTEM

2 adam

4 alex

5 abhijit

6 chris

7 bravo

Now rollback to savepoint B

rollback to B;

SELECT * from class;

The resultant table will look like

ID NAME

1 abhi

2 adam

4 alex

5 abhijit

6 chris

Now rollback to savepoint A

rollback to A;

SELECT * from class;

BHARAT SCHOOL OF BANKING- VELLORE-1
DATABASE MANAGEMENT SYSTEM

The result table will look like

ID NAME

1 abhi

2 adam

4 alex

5 abhijit

Functional Dependency

Functional dependency (FD) is a set of constraints between two attributes in a

relation. Functional dependency says that if two tuples have same values for

attributes A1, A2,..., An, then those two tuples must have to have same values

for attributes B1, B2, ..., Bn.

Functional dependency is represented by an arrow sign (→) that is, X→Y,

where X functionally determines Y. The left-hand side attributes determine the

values of attributes on the right-hand side.

Armstrong's Axioms

If F is a set of functional dependencies then the closure of F, denoted as F
+
, is

the set of all functional dependencies logically implied by F. Armstrong's

Axioms are a set of rules, that when applied repeatedly, generates a closure of

functional dependencies.

 Reflexive rule − If alpha is a set of attributes and beta is_subset_of alpha,

then alpha holds beta.

 Augmentation rule − If a → b holds and y is attribute set, then ay → by

also holds. That is adding attributes in dependencies, does not change the

basic dependencies.

BHARAT SCHOOL OF BANKING- VELLORE-1
DATABASE MANAGEMENT SYSTEM

 Transitivity rule − Same as transitive rule in algebra, if a → b holds and

b → c holds, then a → c also holds. a → b is called as a functionally that

determines b.

Trivial Functional Dependency

 Trivial − If a functional dependency (FD) X → Y holds, where Y is a

subset of X, then it is called a trivial FD. Trivial FDs always hold.

 Non-trivial − If an FD X → Y holds, where Y is not a subset of X, then

it is called a non-trivial FD.

 Completely non-trivial − If an FD X → Y holds, where x intersect Y =

Φ, it is said to be a completely non-trivial FD.

Normalization

If a database design is not perfect, it may contain anomalies, which are like a

bad dream for any database administrator. Managing a database with anomalies

is next to impossible.

 Update anomalies − If data items are scattered and are not linked to each

other properly, then it could lead to strange situations. For example, when

we try to update one data item having its copies scattered over several

places, a few instances get updated properly while a few others are left

with old values. Such instances leave the database in an inconsistent state.

 Deletion anomalies − We tried to delete a record, but parts of it was left

undeleted because of unawareness, the data is also saved somewhere else.

 Insert anomalies − We tried to insert data in a record that does not exist

at all.

Normalization is a method to remove all these anomalies and bring the database

to a consistent state.

First Normal Form

First Normal Form is defined in the definition of relations (tables) itself. This

rule defines that all the attributes in a relation must have atomic domains. The

values in an atomic domain are indivisible units.

BHARAT SCHOOL OF BANKING- VELLORE-1
DATABASE MANAGEMENT SYSTEM

We re-arrange the relation (table) as below, to convert it to First Normal Form.

Each attribute must contain only a single value from its pre-defined domain.

Second Normal Form

Before we learn about the second normal form, we need to understand the

following −

 Prime attribute − An attribute, which is a part of the prime-key, is

known as a prime attribute.

 Non-prime attribute − An attribute, which is not a part of the prime-key,

is said to be a non-prime attribute.

If we follow second normal form, then every non-prime attribute should be fully

functionally dependent on prime key attribute. That is, if X → A holds, then

there should not be any proper subset Y of X, for which Y → A also holds true.

BHARAT SCHOOL OF BANKING- VELLORE-1
DATABASE MANAGEMENT SYSTEM

We see here in Student_Project relation that the prime key attributes are Stu_ID

and Proj_ID. According to the rule, non-key attributes, i.e. Stu_Name and

Proj_Name must be dependent upon both and not on any of the prime key

attribute individually. But we find that Stu_Name can be identified by Stu_ID

and Proj_Name can be identified by Proj_ID independently. This is

called partial dependency, which is not allowed in Second Normal Form.

We broke the relation in two as depicted in the above picture. So there exists no

partial dependency.

Third Normal Form

For a relation to be in Third Normal Form, it must be in Second Normal form

and the following must satisfy −

 No non-prime attribute is transitively dependent on prime key attribute.

 For any non-trivial functional dependency, X → A, then either −

o X is a superkey or,

o A is prime attribute.

We find that in the above Student_detail relation, Stu_ID is the key and only

prime key attribute. We find that City can be identified by Stu_ID as well as Zip

BHARAT SCHOOL OF BANKING- VELLORE-1
DATABASE MANAGEMENT SYSTEM

itself. Neither Zip is a superkey nor is City a prime attribute. Additionally,

Stu_ID → Zip → City, so there exists transitive dependency.

To bring this relation into third normal form, we break the relation into two

relations as follows −

Boyce-Codd Normal Form

Boyce-Codd Normal Form (BCNF) is an extension of Third Normal Form on

strict terms. BCNF states that −

 For any non-trivial functional dependency, X → A, X must be a super-

key.

In the above image, Stu_ID is the super-key in the relation Student_Detail and

Zip is the super-key in the relation ZipCodes. So,

Stu_ID → Stu_Name, Zip

and

Zip → City

Which confirms that both the relations are in BCNF.

Loss of Volatile Storage

A volatile storage like RAM stores all the active logs, disk buffers, and related

data. In addition, it stores all the transactions that are being currently executed.

What happens if such a volatile storage crashes abruptly? It would obviously

take away all the logs and active copies of the database. It makes recovery

almost impossible, as everything that is required to recover the data is lost.

BHARAT SCHOOL OF BANKING- VELLORE-1
DATABASE MANAGEMENT SYSTEM

Following techniques may be adopted in case of loss of volatile storage −

 We can have checkpoints at multiple stages so as to save the contents of

the database periodically.

 A state of active database in the volatile memory can be

periodically dumped onto a stable storage, which may also contain logs

and active transactions and buffer blocks.

 <dump> can be marked on a log file, whenever the database contents are

dumped from a non-volatile memory to a stable one.

Recovery

 When the system recovers from a failure, it can restore the latest dump.

 It can maintain a redo-list and an undo-list as checkpoints.

 It can recover the system by consulting undo-redo lists to restore the state

of all transactions up to the last checkpoint.

Database Backup & Recovery from Catastrophic Failure

A catastrophic failure is one where a stable, secondary storage device gets

corrupt. With the storage device, all the valuable data that is stored inside is

lost. We have two different strategies to recover data from such a catastrophic

failure −

 Remote backup &minu; Here a backup copy of the database is stored at a

remote location from where it can be restored in case of a catastrophe.

 Alternatively, database backups can be taken on magnetic tapes and

stored at a safer place. This backup can later be transferred onto a freshly

installed database to bring it to the point of backup.

Grown-up databases are too bulky to be frequently backed up. In such cases, we

have techniques where we can restore a database just by looking at its logs. So,

all that we need to do here is to take a backup of all the logs at frequent intervals

of time. The database can be backed up once a week, and the logs being very

small can be backed up every day or as frequently as possible.

BHARAT SCHOOL OF BANKING- VELLORE-1
DATABASE MANAGEMENT SYSTEM

Remote Backup

Remote backup provides a sense of security in case the primary location where

the database is located gets destroyed. Remote backup can be offline or real-

time or online. In case it is offline, it is maintained manually.

Online backup systems are more real-time and lifesavers for database

administrators and investors. An online backup system is a mechanism where

every bit of the real-time data is backed up simultaneously at two distant places.

One of them is directly connected to the system and the other one is kept at a

remote place as backup.

As soon as the primary database storage fails, the backup system senses the

failure and switches the user system to the remote storage. Sometimes this is so

instant that the users can’t even realize a failure.

o ensure the integrity of data during a transaction (A transaction is a unit of

program that updates various data items, read more about it here), the

database system maintains the following properties. These properties are widely

known as ACID properties:

 Atomicity: This property ensures that either all the operations of a

transaction reflect in database or none. Let’s take an example of banking

system to understand this: Suppose Account A has a balance of 400$

BHARAT SCHOOL OF BANKING- VELLORE-1
DATABASE MANAGEMENT SYSTEM

& B has 700$. Account A is transferring 100$ to Account B. This is a

transaction that has two operations a) Debiting 100$ from A’s balance b)

Creating 100$ to B’s balance. Let’s say first operation passed

successfully while second failed, in this case A’s balance would be 300$

while B would be having 700$ instead of 800$. This is unacceptable in a

banking system. Either the transaction should fail without executing any

of the operation or it should process both the operations. The Atomicity

property ensures that.

 Consistency: To preserve the consistency of database, the execution of

transaction should take place in isolation (that means no other transaction

should run concurrently when there is a transaction already running). For

example account A is having a balance of 400$ and it is transferring 100$

to account B & C both. So we have two transactions here. Let’s say these

transactions run concurrently and both the transactions read 400$ balance,

in that case the final balance of A would be 300$ instead of 200$. This is

wrong. If the transaction were to run in isolation then the second

transaction would have read the correct balance 300$ (before debiting

100$) once the first transaction went successful.

 Isolation: For every pair of transactions, one transaction should start

execution only when the other finished execution. I have already

discussed the example of Isolation in the Consistency property above.

 Durability: Once a transaction completes successfully, the changes it has

made into the database should be permanent even if there is a system

failure. The recovery-management component of database systems

ensures the durability of transaction.

